MiRNA Expression Profile of Human Subcutaneous Adipose and during Adipocyte Differentiation
نویسندگان
چکیده
BACKGROUND Potential regulators of adipogenesis include microRNAs (miRNAs), small non-coding RNAs that have been recently shown related to adiposity and differentially expressed in fat depots. However, to date no study is available, to our knowledge, regarding miRNAs expression profile during human adipogenesis. Thereby, the aim of this study was to investigate whether miRNA pattern in human fat cells and subcutaneous adipose tissue is associated to obesity and co-morbidities and whether miRNA expression profile in adipocytes is linked to adipogenesis. METHODOLOGY/PRINCIPAL FINDINGS We performed a global miRNA expression microarray of 723 human and 76 viral mature miRNAs in human adipocytes during differentiation and in subcutaneous fat samples from non-obese (n = 6) and obese with (n = 9) and without (n = 13) Type-2 Diabetes Mellitus (DM-2) women. Changes in adipogenesis-related miRNAs were then validated by RT-PCR. Fifty of 799 miRNAs (6.2%) significantly differed between fat cells from lean and obese subjects. Seventy miRNAs (8.8%) were highly and significantly up or down-regulated in mature adipocytes as compared to pre-adipocytes. Otherwise, 17 of these 799 miRNAs (2.1%) were correlated with anthropometrical (BMI) and/or metabolic (fasting glucose and/or triglycerides) parameters. We identified 11 miRNAs (1.4%) significantly deregulated in subcutaneous fat from obese subjects with and without DM-2. Interestingly, most of these changes were associated with miRNAs also significantly deregulated during adipocyte differentiation. CONCLUSIONS/SIGNIFICANCE The remarkable inverse miRNA profile revealed for human pre-adipocytes and mature adipocytes hints at a closely crosstalk between miRNAs and adipogenesis. Such candidates may represent biomarkers and therapeutic targets for obesity and obesity-related complications.
منابع مشابه
MicroRNA Expression in Human Omental and Subcutaneous Adipose Tissue
MicroRNAs (miRNAs) are small non-coding RNAs, that play important regulatory roles in a variety of biological processes, including development, differentiation, apoptosis, and metabolism. In mammals, miRNAs have been shown to modulate adipocyte differentiation. Therefore, we performed a global miRNA gene expression assay in different fat depots of overweight and obese individuals to investigate...
متن کاملMicroRNA profiling links miR-378 to enhanced adipocyte lipolysis in human cancer cachexia.
Cancer cachexia is associated with pronounced adipose tissue loss due to, at least in part, increased fat cell lipolysis. MicroRNAs (miRNAs) have recently been implicated in controlling several aspects of adipocyte function. To gain insight into the possible impact of miRNAs on adipose lipolysis in cancer cachexia, global miRNA expression was explored in abdominal subcutaneous adipose tissue fr...
متن کاملMicroRNAs Are Required for the Feature Maintenance and Differentiation of Brown Adipocytes
Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator o...
متن کاملThe Association of Omentin Gene Expression in Visceral and Subcutaneous Adipose Tissues with Plasma Fatty Acids Profile and Dietary Fatty Acids
Introduction: Omentin, an adipokine, with anti-inflammatory effects reduces insulin resistance, and can hence, play an important role in prevention of cardiovascular disease and diabetes. The present study aimed to investigate the association of plasma and dietary fatty acids with gene expression of omentin in visceral and subcutaneous adipose tissues. Materials and Methods: Visceral and subcut...
متن کاملAdipocyte produces matrix metalloproteinases 2 and 9: involvement in adipose differentiation.
Adipocyte hypertrophy and hyperplasia together with angiogenesis contribute to the growth of the fat mass. Because changes in the extracellular matrix (ECM) components are often associated with such cellular remodeling, we studied the adipocyte expression of the matrix metalloproteinases (MMPs) 2 and 9, two key enzymes involved in the modulation of ECM. The present study provides the first evid...
متن کامل